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The theory of deconvolving the microdiffraction data-set available in a scanning
transmission electron microscope or, equivalently, the set of all bright- and dark-field
images available in a conventional transmission electron microscope to obtain super-
resolution micrographs (which are not limited by the transfer function of the
objective lens) is developed and described with reference to holography and other
phase-retrieval schemes. By the use of a Wigner distribution, influences of the
instrument function can be entirely separated from the information pertaining to the
specimen. The final solution yields an unambiguous estimate of the complex value of
the specimen function at a resolution which in theory is only limited by the electron
wavelength. The faithfulness of the image processing is shown to be not seriously
affected by specimen thickness or partial coherence in the illuminating beam. The
inversion procedure is remarkably noise insensitive, implying that it should result in
a robust and practicable experimental technique, though one that will require very
large computing facilities.
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1. Introduction

For many years there has been a large disparity between the spatial resolution
obtainable in a transmission electron microscope (currently 1.5-2 Af) and the
wavelength of a high-energy electron (typically 0.05 A or less). We do not discuss
here scanning tunnelling microscopy (stT™), which is a surface-sensitive technique
(Binning et al. 1982), but consider the question of retrieving transmitted information
from a far-field scattering experiment with the intent of obtaining three-dimensional
information on the specimen structure. In these circumstances, the resolution
problem has remained remarkably insuperable (for reasons which are reviewed
briefly in §2), despite the fact that the present limit is of the same order of magnitude
as the atomic bond lengths, so that even a minor improvement can greatly increase
the classes of material that can be studied directly by the electron microscope. The
most debilitating experimental problems are related to electrical, magnetic and
mechanical instabilities. In any scattering experiment where only intensities can be
measured, retrieval of the relative phase of the Fraunhofer diffraction plane, which
is equivalent to obtaining a full description of the wavefield which has emanated
from the specimen, relies upon re-interference of separated parts of the diffraction
plane. In the case of electron scattering, this essential requirement is extremely
difficult to achieve if the difference in path length between interfering components is
large : any instability in the instrument or external interference from stray magnetic
fields will alter the relative phase of the beams.

To overcome the resolution problem in a robust and practical way, we are
therefore faced with the following problem: Is it possible to construct an electron
scattering experiment which does not rely upon interference of beams which possess
large differences in their path length, but which nevertheless allows retrieval of the
phase of the entire scattered wavefield? We show here that at least in the case of
kinematical scattering, there is a complete theoretical solution to this problem. We
use a data-set which is equivalent to all possible images which could be collected in
a conventional transmission electron microscope (cTEM) as a function of all dark-field
(tilted) illumination conditions, though in practice this could be most conveniently
recorded in the microdiffraction plane of a scanning transmission electron microscope
(stEM). For any one of these images, only a small portion of the diffraction plane can
pass through the electron lens, and therefore each image has poor resolution.
However, by suitable processing using a Wigner-distribution deconvolution, we can
obtain a very high resolution reconstruction of the specimen function. Furthermore,
the processing method is shown to be extremely noise-robust, able to cope with
partial coherence in the source (in the case of sTEM) and is not limited to very thin
specimens. The main practical constraint will be that the data-set is somewhat large,
but given that computing power is becoming progressively cheaper, particularly in
relation to the cost of improving resolution by other means (such as by using higher
accelerating voltages), this is a minor difficulty. The important conclusion is that
the resolution problem should be tractable within the framework of prevailing
experimental apparatus.

In §2 we review the origin of the resolution problem and discuss why many earlier
suggestions for overcoming the present limit have failed. In §3 we examine why the
microdiffraction plane in sTeEMm offers the possibility of obtaining much higher

t1A=10"m.
Phil. Trans. R. Soc. Lond. A (1992)
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Figure 1. The configuration of a generalized scattering experiment. Parallel illumination is incident
upon a thin transmitting specimen. The detector is positioned sufficiently far away for it to lie in
the Fraunhofer diffraction plane.

resolution information and we develop an elementary theory for how this can be
processed by using a Fourier transform algorithm based on a Wigner-distribution
deconvolution. It is shown that the complex transfer function of the poor-quality
magnetic lens can be filtered directly from the information pertaining to the
specimen, and that obtaining super-resolution reduces to a phase-retrieval problem.
The influence of specimen thickness is discussed in §4. In §5 the theory is developed
further to account for both thickness effects and incoherence in the source. A one-
dimensional calculation is presented in §6 which strongly suggests that the algorithm
is not significantly noise sensitive. Conclusions are presented in §7.

2. The resolution problem

Figure 1 shows an idealized electron scattering experiment. Parallel illumination
is incident upon a specimen and the detector is sufficiently far away for it to lie in
the Fraunhofer diffraction plane. We assume that the waves interact elastically and
multiplicatively with a specimen which can be represented as a complex-valued
function. Most thin specimens are effectively non-absorbing and so they only
introduce a phase change to the incident radiation which is proportional to the
projected atomic potential (Cowley 1981a). In what follows, we may solve for a
strong phase object, which corresponds to a full, dynamical solution to the scattering
interaction provided the specimen in infinitesimally thin (Fejes 1977). For scattering
from a thick specimen, we assume the first Born approximation (Mott & Massey
1933); that is to say, each part of the specimen is subject to an incident beam
amplitude which is unaffected by scattering from other parts of the specimen.

(a) Conventional diffraction

In figure 1, the detector lies in the Fraunhofer diffraction plane, and so by
definition, the Fourier transformation of the complex value of the wave disturbance
measured over the whole plane yields a reconstruction of the waves emanating out
of the specimen. Unfortunately, being a matter wave, the phase of the electron
wavefunction cannot be measured directly. However, being restricted to being able
to record only the intensity, which corresponds to the case of conventional electron
or X-ray diffraction, is for many classes of specimen not such a severe drawback. The
‘phase problem’ in diffraction theory (Woolfson 1961) is usually tractable because

Phil. Trans. R. Soc. Lond. A (1992)
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the experiment is provided with large quantities of a priori information; the
specimen is crystalline and atomic coordination is subject to chemical constraints.
By simply taking the Fourier transform of the diffraction intensity, the resulting
Patterson function (Patterson 1934) gives a plot of the autocorrelation function of
the specimen, and this clearly shows what information has been lost; diffraction
experiments measure the distribution of relative separations within the specimen but
are insensitive to absolute position. However, the great advantage of diffraction,
which we make use of below, is that it is experimentally robust. Unlike techniques
such as imaging and holography, all the pertinent wave interference occurs at, or in
the very close vicinity of, the specimen. Once the wave train has set off towards the
detector, we do not require it to interfere at some other point in the apparatus and
so the source may be relatively incoherent implying that the technique is not very
sensitive to physical vibration and other sources of mechanical and electrical
interference.

It should be pointed out that there exists a theoretical solution to the Fraunhofer
diffraction phase problem, even when the specimen is not crystalline. We may
assume that any actual specimen is finite, in which case the set of allowed intensity
distributions in the diffraction plane can be shown to be limited (Burge et al. 1976).
Given a particular intensity distribution, the specimen function is nearly always
uniquely defined if it is two dimensional, or of higher dimensionality (Bates &
McDonnell 1986). There has recently been rapid progress in the development of
iterative algorithms for converging upon a complex object function of known size
even if only the intensity of its Fourier transform can be measured (see, for example,
Fienup 1987). However, in the case of electrons, these techniques would be difficult
to implement. To reconstruct the specimen, it is of course necessary to make a
sufficient number of measurements to define its (complex) value at a particular
sampling frequency (resolution) in real space over its total spatial extent. The object
size defines a corresponding minimum sampling frequency in the diffraction plane,
which incidentally must be twice as high as that required for the conventional
complex Fourier transform when only intensity is measured (Bates & McDonnell
1986). For example, if it were possible to isolate a specimen of 1000 x 1000 A? by
using an opaque aperture, then for 100 keV electrons, the detector would have to
have a resolution of better than 20 prad. Furthermore, the pattern would have to be
recorded with very good counting statistics because iterative algorithms for phase
retrieval are not particularly noise insensitive, at least compared with the method
developed below, and so this would not seem to be the most practicable solution. It
is interesting to note, however, that it is theoretically possible to construct an
electron microscope by using a very good quality detector and a large computer ; the
electrons lens, so often blamed for the resolution problem, is not strictly necessary.

(b) Conventional imaging

Given that microscopy is equivalent to assigning a phase to the Fraunhofer
diffraction plane up to a particular scattering angle (proportional to the final
resolution) and at a particular angular resolution (inversely proportional to the total
size of the specimen), then the role of a lens can be regarded as simply a convenient
method for re-interfering certain sections of the diffraction pattern. This is essentially
the Abbé theory of light microscopy.

Figure 2 shows the experimental arrangement for bright-field imaging, which is the
most commonly used technique in the electron microscope. Plane wave illumination

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 2. The optical configuration for conventional bright-field imaging. The incident illumination
is parallel with the optic axis of the microscope and is transmitted to the image plane, where it acts
as a reference wave for those beams scattered by the specimen and refocussed by the lens.

parallel to the optic axis is incident upon the specimen. The lens collects the
Fraunhofer diffraction pattern up to a particular cut-off angle which is defined by the
objective aperture positioned in the back-focal plane. Though being able to record an
image directly is a great improvement in comparison to only having access to the
diffraction plane intensity, the technique does not completely overcome the phase
problem insofar as the image can still only be recorded in intensity.

To produce a faithful image, we wish the lens to perform a Fourier transform on
the complex wavefield lying within the objective aperture. However, because thin,
high-resolution specimens are essentially non-absorbing and only introduce a phase
change in the incident beam, if the lens is absolutely perfect, the image intensity
would be uniformly bright and would therefore, ironically, contain no information at
all. Scherzer (1949) has shown that at certain value of defocus, spherical aberration
inherent in a magnetic lens (Scherzer 1936) could be usefully employed as a phase
plate, as in optical phase microscopy (Bennett et al. 1951). Ideally, the (largely
unattenuated) incident beam is allowed through to the image to act as a reference
wave while all scattered beams, which fall off the optic axis in the back-focal plane,
are subject to a phase change. If we assume that the specimen is a weak phase object,
it can be shown (see, for example, Spence 1981) that the final image has a contrast
which is proportional to the phase change introduced by the specimen (which, as a
first approximation, is in turn proportional to the projected atomic potential). But
under these circumstances there is also a very clearly defined resolution limit which
appears to be insurmountable. The phase change ¢ produced in the back-focal plane
as a function of €, the radial angle from the optic axis, is given to a first
approximation by

¢ = (AFT/A) 0>+ (C /27) 6%, (1)

where AF is the defocus of the lens, C is the spherical aberration constant of the lens,
and A is the wavelength. For a given spherical aberration constant (which is usually
of the order of the focal length) the angular range in which ¢ can be maintained as
constant is very limited (of the order of 10 mrad), though in the Scherzer condition
it is balanced in part by the defocus term. In the phase contrast image, the strength
of the expression of a particular spatial frequency is given by sin ¢, which is referred
to as the contrast transfer function (ctr). Clearly, at large values of & (where the high
resolution information resides), the term involving C; in equation (1) dominates and
results in zeros and changes of sign in the c¢Tr which seriously corrupt the fidelity of
the final image. It is therefore usual to choose an objective aperture which cuts off
the crF at an angle corresponding to its first zero to avoid uninterpretable (and
invariably misleading) artefacts in the image.

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 3. The optical configuration for transmission holography, as first proposed by Gabor.
Interference now occurs not in the image plane (as in figure 2) but over a region equivalent to the
conventional diffraction plane. The advantage of the technique is that aberrations introduced by
the lens can be accounted for during the reconstruction process.

The whole rationale of conventional high-resolution phase-contrast imaging is to
obtain as broad a cTF as possible. Unfortunately, any significant improvement in the
resolution (i.e. usable values of ) requires dramatic reduction of the spherical
aberration constant, because of the dependence of the power of four in 6 (equation
(1)). Over the past 20 years or so, great efforts in lens design have managed to reduce
C, to fractions of a millimetre, but it now seems improbable that further gains in
resolution by this method will be forthcoming. Recent suggestions for compensation
of spherical aberration by higher-order octupoles (Shao et al. 1988; Shao & Crewe
1988) may prove hard to implement experimentally. Alternatively, one can reduce
the electron wavelength by raising the accelerating voltage but this scheme faces a
similar theoretical cut-off, though one which is possibly less severe than the spherical
aberration problem. A conventional electron microscope works at an accelerating
voltage of between 100-300 keV, at which the electron, having a rest mass of
0.51 MeV, is already relativistic. Gains in resolution are therefore less than
proportional to the increase in voltage, and become marginal beyond a few MeV.
More seriously, however, above about 100-200 keV many specimens suffer severe
knock-on damage : the incident electrons have enough energy to displace atoms right
out of the specimen (Makin 1968). Real gains in resolution, say by a factor of ten,
can only occur if the total angular range of the diffraction plane contributing to
the experiment is increased. Because of the spherical aberration problem, the
conventional bright-field image would not appear to hold much promise.

(¢) Holography and instability

In his original invention of holography, Gabor (1948, 1949) proposed that the
imitations of phase-contrast electron microscopy could be overcome by using the
arrangement shown in figure 3. Here, the lens is not being used to form an image, but
is simply a method for providing a reference wave over a wide region of the
Fraunhofer diffraction plane. Any type of beam-splitter device may be used.
Provided the reference beam is strong relative to the scattered amplitude then the
hologram records all amplitude and phase information in the scattered wavefield
(which is as much as we could ever hope to obtain), at least to within an ambiguity
of two possible reconstructions. Unlike the bright-field image, the technique is no
longer subject to the contrast transfer characteristics of the lens, because the
interference occurs not in the image but over a region equivalent to the back focal
plane. Though the reference beam may have a complicated phase structure
(prescribed by equation (1) with a large value of defocus because the specimen does

Phil. Trans. R. Soc. Lond. A (1992)
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not lie in the focal plane), it may have a large amplitude at all angles. Gabor
envisaged that it would be possible to magnify the electron hologram so that it could
be later reconstructed by using light optics in such a way that any imperfections in
the electron lens could be mimicked accurately. Finally, a wide-angle optical lens
would focus the reconstructed wavefield into a high-resolution image. The in-line
configuration (as shown in figure 3) suffers from certain difficulties (unlike, for
example, side-band holography (Leith & Upatnieks 1962)) in separating the two
reconstructions, for reasons which have been well documented (Hanzsen 1982), but
it shows that a good quality lens is not a prerequisite for high-resolution imaging if
it is used simply as a primitive beam-splitter and one is prepared to do a significant
amount of post-experimental processing.

It is somewhat ironic that holography has had so many successful applications,
except in the specific field for which it was invented. To record a hologram, the
reference beam must be stable with respect to the scattered beam to within a fraction
of a wavelength, and whereas this requires care in the case of light, it has proved to
be extremely difficult for electrons which have a wavelength five orders of magnitude
shorter, and which are also vulnerable to magnetic interference. First successful
attempts were hampered by low beam intensities (Haine & Mulvey 1952) which
occur once an incoherent source has been demagnified sufficiently to obtain the
requisite spatial coherence. During the long exposure times which are then necessary,
the specimen inevitably drifts. Recent attempts (Lichte 1986; Lin & Cowley 1986;
Tonomura 1987) have been more successful, allowing for the amplitude and phase of
the specimen function to be measured directly. Volki & Lichte (1990) have obtained
astonishingly fine interference fringes corresponding to a real-space distance of 0.3 A
but have yet to demonstrate that the instrument function can be deconvolved from
the image. It may well be that holography will routinely record higher-resolution
micrographs than the bright-field technique, but it is unlikely to become
experimentally robust and will ultimately remain limited by instability.

The general problem of instrument instability is also encountered in high-
resolution bright-field imaging, where it is common experimental practice not to use
a physical aperture in the back-focal plane of the objective lens to cut-off unwanted
parts of the cTF, but instead rely on instability in the whole apparatus to dampen the
contribution of high spatial frequency components in the image.

The instability term is often modelled as a gaussian envelope (Frank 1973), which
decays as a function of angle . It results from several contributions including
chromatic spread in the source (i.e. instability in the accelerating voltage supply),
ripple in the objective lens current supply which is equivalent to variation in the
defocus term of equation (1), and interference from oscillating magnetic fields which
are hard to avoid in the laboratory environment. All of these effects reduce the
ability for higher-angle beams to interfere at a fixed phase difference during the
integration time of the recording process. Suffice it to say that irrespective of the
adverse properties of electron optics, any type of improvement in image resolution
must face up to the fundamental problem of instability. Development of the theory
of phase-retrieval of electron imaging during the 1970s (for a review, see Saxton
1980) established that apart from holography, there are numerous theoretical
methods of processing various types of data to retrieve the phase of the image plane,
for example, by iterative convergence algorithms using the intensity distributions in
both diffraction and image plane (Gerchberg & Saxton 1972; Gerchberg 1972;
Chapman 1975a, b), by processing several images as a function of defocus (Misell

Phil. Trans. R. Soc. Lond. A (1992)
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1973), or by using judicious combinations of varying objective aperture shapes
(Misell & Greenaway 1974). Once this has been achieved, then it should be possible
to deconvolve the result with the complex transfer function of the lens to obtain
arbitrarily good resolution; the limitations of the zeros and changes of sign in the
contrast transfer function arise from only being able to record image intensity.
However, all of these schemes rely on re-interfering beams which have traversed
significantly different paths well separated in diffraction space and which are
therefore subject to the same experimental difficulties as holography.

(d) Dark-field imaging, reciprocity and microdiffraction

From the preceding sections, it is evident that there is certainly no lack of
theoretical possibilities for extracting very high resolution information from the
electron microscope. However, despite its very considerable failings, the bright-field
image has still yet to be routinely improved upon. It has two persuasive advantages:
the image can be seen immediately while the experiment is being performed and the
instrumental specifications are not nearly as demanding as any of the alternative
arrangements discussed so far. Any method which attempts to improve upon the
bright-field technique is bound to have to perform some sort of computation akin to
a deconvolution or holographic reconstruction, and so the instantaneous nature of
the image is likely to be lost. But having conceded that a large computational effort
will be required, it would seem logical to concentrate on collecting and processing a
data-set which is as insensitive as possible to the known experimental difficulties.

Consider figure 4 a, which corresponds to a tilted (dark-field) illumination condition
in the conventional electron microscope. It is clear that if we no longer restrict
ourselves to illumination parallel to the optic axis, there is a large set of images which
may be collected from a single specimen. Of course, any one dark-field micrograph
can only have the same resolution as the bright-field image, but it is worth asking
whether the whole data-set thus acquired may be used to solve for the specimen at
super-resolution. The advantage of the optical geometry is that the requirements for
the instrument stability are the same as for the bright-field image. Even when the
illumination angle is large, the lens only has to re-interfere a similar solid angle of
wavefield. The interference processes which allow for very high angle information to
contribute to the recorded data are occurring at the specimen itself, as in
conventional diffraction. This is the data-set we use in the Wigner-distribution
deconvolution method.

Let us consider the scanning transmission electron microscope (sTem). For thin
(say of the order of 10 nm thick) elastically scattering specimens, the data-set shown
in figure 4a can most effectively be measured by placing a two-dimensional detector
in the microdiffraction plane of a sTEM, as shown in figure 4b6. By the principle of
reciprocity, a STEM can be regarded as a ¢TEM run in reverse (Cowley 1969), with the
source and image planes exchanged. Any particular point in the microdiffraction
plane of a sTEM corresponds to an angular position of the source in cTeEM, while the
source in STEM lies at an equivalent position to one point in the image plane of a
crEM. A conventional bright-field image can therefore be obtained in a sTEM by
scanning the source sequentially across the image plane (which is achieved in practice
by deflecting the position of the beam cross-over at the specimen using magnetic
deflection coils) while detecting the intensity at the central point in the micro-
diffraction plane (defined by the ‘collector’ aperture) and displaying the resulting
signal synchronously on a cathode ray tube.

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 4. (@) Examples of different illumination conditions for dark-field imaging. There is a whole
plane of image data available for each possible incident angle. For any one of these images, the lens
only has to interfere a limited region of the Fraunhofer diffraction plane. (b) The optical
configuration for microdiffraction in a scanning transmission electron microscope. This is identical
to (a), except the direction of all rays have been reversed. By the principle of reciprocity, a
microdiffraction pattern can therefore be regarded as a plot of the intensity of one image pixel in
the conventional image plane as a function of all angles of illumination in the conventional
microscope.

Reciprocity is useful for understanding why features such as Fresnel fringes,
thickness fringes and phase contrast effects are virtually identical in the two types
of machine despite the fact that they appear to operate by entirely different
mechanisms. In the rest of this paper, we will occasionally make use of reciprocity
to explain the origin and relationship of various types of information. It should be
understood that when we refer to an image we mean either the image recorded in
CTEM by using one angle of illumination or, equivalently, the signal collected at one
scattering angle in the microdiffraction plane of a sTEM as a function of all probe
positions. Similarly, a microdiffraction pattern in sSTEM can be regarded as a plot of
the intensity which would be measured at one point in the image plane of a cTEM as
a function of all possible angles of illumination.

(e) Experimental considerations of STEM

STEM is notoriously poor at producing good quality, real-space images because in
order to satisfy the necessary counting statistics for a given spatial resolution, the
source must be extremely bright (see, for example, Brown 1981). Having taken into
account the demagnification in the objective lens (and earlier lenses if fitted) the
source must be smaller than the size of the resolution element of the microscope (as
defined by the objective lens aberrations coupled with the chosen objective aperture)

Phil. Trans. R. Soc. Lond. A (1992)
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otherwise the final image is further compromised by being convolved with the source
shape. Crewe et al. (1968) overcame the brightness problem by using a cold field-
emission gun (FEG), but at the price of requiring the entire microscope to be held at
ultra-high vacuum.

This experimental complication, which necessitates indirect recording methods
(and not, for example, the use of photographic film which would tend to outgas into
the chamber), coupled with the fact that the main success of sTEM has been in high-
spatial resolution micro-analysis (i.e. recording the X-ray, electron-energy loss and
other secondary signals that come from the small illuminated volume of specimen
(Brown 1981)) has resulted in the microdiffraction plane being surprisingly under-
exploited. It is widely regarded as merely another analytical tool, suitable only for
making approximate measurements of the lattice spacings in small crystallites.

More recent instrumental developments (see, for example, Cowley 1980;
Rodenburg & McMullan 1985) have indicated that the fine-scale structure of
microdiffraction patterns obtained from both crystalline and disordered specimens
(Cowley 1979, 1981b; Rodenburg 1988) is complicated and heavily dominated by the
microscope’s transfer function, leading, for example, to a consistent breakdown in
Friedel’s law (Rodenburg 1988). It has been demonstrated recently (McMullan et al.
1990) that it is possible to record energy-filtered microdiffraction patterns through
the electron spectrometer at high angular resolution, high efficiency, and good
dynamic range via a yvaG scintillator coupled optically to a ccp array. This
arrangement has the advantage of allowing inelastically scattered electrons, which
may otherwise compromise the diffracted elastic signal, to be filtered out from the
measured data-set. Given that this is now available, it would appear appropriate to
develop the theory for how to process it efficiently, preferably in real time. The main
difficulty arises from the enormous size of the data-set. For example, if the probe is
moved over a 256 x 256 grid of points on the specimen, and for each probe position
the microdiffraction pattern is recorded over a 256 x 256 array, the data-set will be
about 4 gigabytes in size.

It has already been shown experimentally that super-resolution is possible by
tracking the intensity of Patterson components in the microdiffraction plane
(Konnert & D’Antonio 1986 ; Konnert et al. 1989), but this method relies on having
considerable @ priori information about the structure being examined. The present
work demonstrates that a full set of microdiffraction patterns can be manipulated by
using Fourier transforms (which are inherently fast and may be performed by using
parallel computing techniques) to obtain a unique estimate of the complex value of
the specimen function at higher resolution than the conventional Rayleigh limit
prescribed by the lens/aperture configuration without any a priori information. It
should therefore be useful for imaging all classes of specimen at increased resolution,
including amorphous materials.

3. Elementary theory and physical interpretation
(@) Ptychography versus holography
Earlier work by Hoppe (1969a, b), Hoppe & Strube (1969), Spence (1977) and
Spence & Cowley (1978) has shown that the microdiffraction plane can in principle
be used to solve for the phase of high-angle diffracted beams which would normally
lie outside the usable region of the objective aperture in conventional microscopy,
at least in the case of the specimen being a thin crystal of known unit cell size (for
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a review see Rodenburg 1989). The physical basis of the method relies on being able
to move the probe across the specimen (or change the illumination conditions) in
such a way that a multiple set of intensity measurements can be made in the
microdiffraction plane, allowing for full solution of the phase of every beam. This
type of phase-retrieval can be usefully referred to as ‘ptychography’ (following
Hegerl & Hoppe (1972) and Hoppe & Hegerl (1980)) to differentiate it from reference-
beam holography.

Ptychography can be most easily understood by considering the ray diagram for
sTEM shown in figure 5a. In the absence of a specimen, the microdiffraction plane
consists of a bright disc which corresponds to a shadow image of the objective
aperture. Now consider the introduction of a thin crystalline specimen. Because of
the range of incident angles in the probe, any given diffraction spot will result in a
disc of scattered amplitude. With careful choice of objective aperture size with
respect to the unit cell size, it is possible to arrange for a first-order diffracted disc
to just overlap with the zero-order disc, as shown in the diagram. Given that the
electron source is spatially coherent (i.e. of very small physical extent), the two discs
can interfere with one another coherently. The resulting intensity in the region of
overlap will depend upon the phase of the underlying reciprocal lattice point, the
complex transfer function of the lens and the probe position. Simple consideration of
the interference condition in the complex plane (figure 5b) shows that this phase is
not uniquely defined by measuring the three intensities available (of both discs and
of the region of overlap). Unique determination is possible, however, if the probe is
shifted laterally and the experiment is repeated. Shifting the probe is equivalent to
introducing a phase ramp across the back focal plane of the objective lens, say by the
introduction of a very thin prism (figure 5¢). At the plane of their interference, the
two discs also possess the phase ramp, but because opposite edges of the aperture
overlap, different phase changes are introduced to the two beams before they
interfere, thus allowing for a second estimate of their relative phase which, for a
carefully chosen probe movement, can be used to solve for the ambiguity in figure 5.

Ptychographical information can also be regarded as residing in image interference
fringes available in the conventional electron microscope. In figure 5d essentially the
same expriment is performed by illuminating the specimen from a point at an angle
defined by the region of disc overlap in figure 5a. In the back focal plane of the
objective lens, two diffraction spots will occur, either side of the optic axis, which will
then propagate to the image plane where they will form a set of interference fringes.
By reciprocity, this information is identical to a map of the disc-overlap intensity in
STEM as a function of all probe positions. The fringes may be thought of as a poor
(low-resolution) image of the specimen which maps the periodicity of the unit cell.
Information pertaining to the relative phase of the two diffraction spots will lie in the
exact position (i.e. the phase) of the interference fringes relative to the optic axis. By
choosing many illumination angles, it would be possible in principle (though difficult
experimentally) to interfere all pairs of diffraction spots lying in the back-focal plane
(even those lying well outside the objective aperture) and thus determine all their
relative phases. In none of these experiments would it be necessary to use more than
a small region of the object lens close to the optic axis. That is to say, all the
measurements can be made within the limits dictated by instrument instability.

Hoppe (1969 a) originally proposed ptychography as a solution to the conventional
diffraction pattern phase problem under circumstances in which it is possible to move
a small aperture over the specimen plane. The particular form of the aperture in sTEM
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Figure 5. An illustration of the principle of phase determination by ptychography. (a) The
microdiffraction pattern that will occur when a thin crystalline specimen is illuminated by a sTEM
probe. For simplicity, only the zero-order and one diffracted order (in the form of a disc) have been
shown. The intensity measured at point B in (a) is governed by the complex addition shown in (b).
Complex amplitudes 4 and C add up to give B. We can measure A2, B and C%. This does not
determine uniquely the phase relation between 4 and C (the dotted addition in (b) is equally valid,
given the available intensity measurements). However, moving the probe, which is equivalent to
the introduction of a thin phase wedge shown in (¢), can resolve the ambiguity by rotating 4 and
C in opposite directions. By reciprocity, the same information resides in the exact position of
interference fringes in the conventional two-beam image (d).
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(which in this context is not a physical aperture, but corresponds to the probe
function at the specimen plane) conveniently results in each diffraction spot being a
neat disc which can be arranged to overlap with only one other order at a time. Even
so0, explicit calculation of the relative phase of each diffraction spot relies on having
substantial @ priori knowledge of the specimen ; it must be crystalline and of known
unit-cell size. Specimens with very large unit cell size will result in many diffraction
orders contributing to each intensity measurement. Furthermore, the exact form of
the object lens transfer function as defined by the values of defocus and spherical
aberration in equation (1) will radically affect the actual intensity measurements
recorded. Indeed, in the worst-case limit of an entirely amorphous, disordered
specimen, it is well established that the microdiffraction plane consists of apparently
random patches of intensity which can be regarded as a speckle phenomenon
principally dominated by the instrumental conditions (Rodenburg 1988). Not-
withstanding these difficulties, it is important to note that microdiffraction data
collected as a function of all probe positions is rich in phase information and hence
super-resolution information; the electron lens is used merely as an imperfect
interferometer.

Unlike reference-beam holography, ptychography does not require the entire
detector plane to be filled with a reference wave because first-order diffraction discs
which interfere with the unscattered beam can themselves be used to phase second-
order discs, and so on and so forth. Using diffraction orders themselves as a reference
wave should lend the technique much greater experimental stability because, like in
conventional diffraction, most of the pertinent interference occurs in the vicinity of
the specimen. Furthermore, the Wigner deconvolution described below does not
suffer from any ambiguity in the final reconstruction (except in the special case of
non-overlapping diffraction discs); there is no need to separate two reconstructions
as in Gabor holography. Although this result is evident from the mathematics, some
physical insight into where this extra information is coming from may be obtained
by considering the Gabor hologram which occurs in the unscattered zero-order beam
at the centre of the microdiffraction pattern (note the similarity between the ray
diagrams shown in figures 3 and 4b). If data from only one probe position is
processed, successful reconstruction can only be achieved by severely defocusing the
probe so that the two reconstructions (which in the in-line configuration occur on
either side of the beam cross-over) can be adequately separated. If the data are also
recorded as a function of probe position, however, Lin & Cowley (1989) have
suggested that the two reconstructions will appear to move in opposite directions,
thus allowing for their unambiguous separation even at small values of defocus.
Similar information is available at high scattering angles via ptychography, where no
direct reference beam exists, but where probe movement also provides unique
solution to the phase problem, as shown in the next section.

(b) Wigner deconvolution and phase-retrieval

We at first treat the various planes of information in the electron microscope as
two dimensional and related to each other by two-dimensional Fourier transforms.
We assume, therefore, that all angles involved are small (i.e. sin @ = ¢) and that the
specimen itself is infinitely thin. Although these approximations are commonly used
in weak-phase object high-resolution microscopy (Spence 1981), they are much less
realistic in the case of the microdiffraction plane, even within the kinematical
approximation, for reasons which are discussed and accounted for in the next section.
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Figure 6. The principle components of the microdiffraction data-set. A source function, f(s),
illuminates the back focal plane of the objective aperture function, 4(#’). This distribution is then
focused by a lens to a narrow cross-over (the probe function), a(r), which lies in the specimen plane.
The probe can be moved laterally to various positions p across the specimen, 3 (r). The
microdiffraction plane amplitude M(#',p) lies in the far-field Fraunhofer diffraction, and its
intensity can be measured up to very large scattering angles compared with the convergence angle
in the probe (which defines the conventional Rayleigh resolution limit).
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It is informative, however, to treat the two-dimensional case first, so that principal
characteristics of the Wigner deconvolution method can be illustrated. In what
follows, we denote reciprocal space functions by upper case symbols and reciprocal
space coordinates by a prime so that, for example, @(¢’) is the Fourier transform of
q(r). The main optical elements of the experiment are shown in figure 6. The probe
function, which lies in the specimen plane, is the Fourier transform of the objective
aperture function, A(#’). In an earlier paper (Bates & Rodenburg 1989) we referred
to the probe as P(r), but here we will denote it as a(r) to emphasize its relationship
to the aperture function. Although the amplitude of A(#’) is of the form of the top-
hat function, its phase depends upon defocus and spherical aberration, as described
by equation (1). As a first approximation, the microdiffraction plane is simply the
intensity of the Fourier transform of the product of the probe function a(r) and the
specimen function, which we write as 1(r). We denote the position of the probe with
respect to the specimen by the two-dimensional coordinate p. The complex value of
the amplitude at the microdiffraction plane, denoted M(r’, p), as a function of all
scattering angles r” and probe positions p, is then given by
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M, p) = Ja(r-p) Yr(r)exp (i2nr-¢')dr, (2)

where for clarity we have omitted a scaling factor of 1/RA in the exponential, where
R is the camera length of the microscope (that is, the distance between the specimen
plane and the detector plane). It should be noted that in practice R, which is of the
order of 10 ecm in a typical microscope, is usually a function of the objective lens
excitation, because its magnetic field tends to spill over the specimen plane, thus
compressing the diffraction pattern. Only the intensity |M(#, p)|* can be recorded,
which may be written

THE ROYAL
SOCIETY

DI, p)* = f f alb—p)a*(c—p) Y (b)Y H(e)expli2n(b ¥ —cr)|dbde,  (3)

where b and ¢ have been introduced as dummy variables corresponding to r in
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equation (2), and * denotes the complex conjugate. Alternatively, we may rewrite
equation (3) using the convolution theorem in terms of the Fourier transforms of y(r)
and a(r—p), so that

M, p)|? = JfA(b’)A*(c’) Y(r—b')P*(r'-c'yexpli2np- (b'—c)]db' dc’, (4)

where b” and ¢’ are dummy variables. If the probe is lying on the optic axis, so that
p = 0, the exponential term in equation (4) becomes unity and the expression reduces
to the intensity of the convolution of the aperture function 4(r’) and the reciprocal
space of the specimen function ¥(#’), and yields the formulation of microdiffraction
derived by Cowley (1978). This is particularly straightforward to visualize in the case
when the specimen function is a two-dimensional crystal. ¥(#’) then consists of a
series of points each of which lies at the centre of a disc the shape of the shadow image
of the objective aperture function, as described in §3a. The exponential term can be
thought of as the phase ramp across the aperture function, as shown in figure 5¢,
defining the amount of probe shift p.

We wish to manipulate |M(r’, p)|? to solve for the complex value of {(r). We have
found that a convenient way of achieving this is to start by taking the forward
Fourier transform of [M (', p)|? with respect to p and the back Fourier transform with
respect to r’, to form a quantity we denote as H(r, p’). Rearrangement of the resulting
integral shows that each point in H(r,p’) can be expressed as a product of two
integrals such that

H(r,p') = Ja*(b)a(b+r) exp (—i2mp’-b)db fl,ﬁ*(c) Y(c+r)exp (i2rp’-c)de. (5)
For any general function ¢(r), we can define a quantity
Xo(a, b) = fq*(C) g(c+a)exp (i2nc-b)dc, (6)

which we refer to as a Wigner distribution, but is sometimes called an offset
correlation function or, in signal processing theory, an ambiguity function (for a
review of similar functions see Cohen (1989)). This definition allows us to write
equation (5) in the compact form

H(r,p') = xu(r, —p) xy(r, p), (7)

and the advantage of forming H(r, p’) now becomes evident since it offers a means of
separating out all the influences of the microscope’s transfer function which are
implicitly contained in y,(r, —p’). Note that the Wigner distribution is highly
constrained, being a four-dimensional function derived from only a two-dimensional
function.

We can form x,(r,p’) by dividing every point in H(r,p’) by x,(r, —p’). This is
identical to a conventional deconvolution process, the only difference being that the
Fourier transform of the measured data-set has both real and reciprocal coordinates.
The usual difficulties associated with a divide-by-zero apply, especially if the original
data-set is noisy (which is bound to be the case in practice), and so it is advisable to
use a Wiener filter (Bates & McDonnell 1986) such that

Xp(rp') = xa(r, —p)H(r,p")/(Ixo(r, —p") | +e), (8)
Phil. Trans. R. Soc. Lond. A (1992)
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Figure 7. Schematic representation of the data-set f(r, p’). H atched regions lie beyond the p; . cut-
off which arises because of the bandwidth- ]1m1ted nature of the probe. These regions cannot
usefully contribute to the deconvolution process.

where ¢ is some small constant. Ideally, ¢ should be a function of both r and p’
corresponding to the signal to noise ratio at each point, though experience with
conventional deconvolution suggests that a constant term is usually sufficient.

In an earlier paper (Bates & Rodenburg 1989), ¢ (r) was obtained from y,(r, p’) by
Fourier transforming it with respect to r’, thus obtaining a purely real-space
quantity from which r(r) could be estimated. It has been found, however, that this
leads to certain difficulties associated with the usable region of H(r, p’), and can only
provide a correct solution if the probe function in real space is finite and sharply
truncated. In practice, the probe is bandwidth limited, being composed of a finite
range of incident k-vectors. There is therefore only a limited range of points in the
p’ direction, up to a value we call p .., for which H(r, p’) has significant value. This
is equivalent to stating that any conventional bright- or dark-field image (collected
as a function of p at a particular value of #’) has a maximum spatial frequency
component, which of course corresponds to the conventional resolution limit defined
by the size of the objective aperture. Note that here we do not refer to the
interpretable resolution limit as in the case of phase-contrast imaging (which depends
also upon the exact form of the complex transfer function of the objective lens), but
merely the maximum spatial frequency which could exist in the image plane, and
which is governed by either the size of the objective aperture or the width of the
stability component of the instrument function of the microscope, whichever is
narrower.

Jonsider figure 7 which is a schematic, two-dimensional plot of H(r, p’), though in
reality it would be a four-dimensional function since both r and p’ are two-
dimensional vectors. By inspecting equation (6), it is clear that along r =0,
Xo(0, —p’) will have the form of the Fourier transform of the intensity of probe,
or, equivalently, the autocorrelation of the objective aperture function 4(#"). Even at
other values of r, it is evident that in the shaded regions of the plane lying beyond
the total aperture width p; .. in the p’ direction, x,(r, —p’) will be zero and so these
regions cannot usefully contribute to the deconvolution process. In what follows,
however, ‘super-resolution’ information is derived from the r-coordinate, which has
been originally obtained from the high-angle scattering data in the microdiffraction
plane. In H(r, p’), super-resolution data exist at small values of r, where y,(r, —p’) is
large, so presenting no problems with the Wiener filtering process.

Having obtained an estimate of y,(r,p’) in the unshaded regions of figure 7,
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Figure 8. Schematic representation of the data-set D(r’, p’), showing the positions and values of
peaks for a simple (and rather artificial) one-dimensional specimen. The diffraction pattern of the
specimen is plotted in the lower diagram, where it should be remembered that 4, B and C may be
complex. D(r, p’) consists of a series of delta-function spikes, positioned in the centre of the square
boxes. Despite the p; ., cut-off, all the beams can be phased with respect to one another (see text
for details).
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solution of the specimen function is best achieved by Fourier transforming this with
respect to the r coordinate, to give a function we call D(r’, p’), such that

D(r', p’) = ¥*(r'—p') ¥(r'), 9)

where it should be noted that ¥(#’) is the Fourier transform of the specimen function
Y (r). We can envisage D(r’, p’), which is shown schematically in figure 8, as consisting
of many estimates of the reciprocal space of the specimen function, each lying in the
p’ direction at fixed r’, and each multiplied by the value of ¥(r’) lying at D(r’,0).
Note that there is still a cut-off at p; ... The conventional diffraction pattern given
by Y*(#') ¥(r’) (which is now deconvolved from the broadening effects of the range
of incident angles in the objective aperture), lies along p” = 0. For a full solution of
the complex value of ¥(r’), we must use information lying at p” # 0 and hence find
relative phases between different parts of the diffraction pattern via equation (9). It
is logical that phase information has arrived along the p’ coordinate, which
corresponds to the reciprocal of the probe-position coordinate, or the reciprocal of the
conventional image plane. As pointed out in the previous section, probe movement
or poor-resolution image structure allows for ptychographical phase-retrieval,
though after the deconvolution process, we no longer have to worry about the
influences of phase changes introduced by the objective aperture function. It is of
course impossible to find the absolute phase of the wavefield, which is anyway a
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meaningless quantity : multiplying the whole diffraction pattern by a constant phase
change will simply alter the phase of the whole image by a similar amount, but all
structural information will remain intact. It is necessary, however, to make an
arbitrary assignment of phase to one point in the pattern and work from there.
D(¥', p’) is highly redundant: it is a four-dimensional function from which we wish
to solve for a two-dimensional image. Given that the original data-set will be noisy
and that it is unlikely that the complex transfer function of the microscope will be
accurately known, this extra information will be invaluable. Exactly how to proceed
from equation (9) will depend upon the type of best-estimate algorithm used. For
example, having arrived at D(#, p’), it may be found that the relative moduli of the
estimates lying along the p” direction do not correspond to the modulus calculated
from the square root of the intensity lying along p” = 0, implying that the original
probe function was incorrectly estimated. There would then be scope for iterative
convergence on a better estimate of a(r). There is a similarly large number of possible
methods for deriving the phase of ¥(r’) from D(r’, p’). The simplest scheme would be
to designate W(0) as purely real (so assigning the arbitrary absolute phase of the
wavefield) and equal to the square root of D(0,0). Along " = 0, we can then write

¥(—p') = D*0,p")/v/D(0,0), (10)

which gives us the complex value of ¥(#’), but only as far as the cut-off at p;,,.. (The
variables 7" and p’ are interchangeable as far as ¥ is concerned, being both reciprocal
coordinates arising from the redundancy in D(#', p’).) Having thus determined the
phase of a point lying at, say, w’, where |w’| < |p},..| we can then move to a strip in
D(¥',p’) lying along ¥ = w’, and write

Y(w'—p') = D*(w', p’) | ¥*(W'). (11)

Although the cut-off at p; . again limits the usefulness of this equation, we now have
access to the complex value of a region of reciprocal space displaced by w” and hence
we can find measurable estimates of ¥(w’—p’) where in some parts |[w' —p’| > |praxl-

Consider, for example, a crystalline specimen with reciprocal lattice peaks of
complex value 4, B and C, also shown in figure 8. Along p’ = 0 in D(#', p’) we have
the conventional diffraction peaks of height A*4, B*B and C*C. B*4 occurs before
the p,.. cut-off along r' = 0 in D(r’, p’), and so assuming we assign arbitrary phase
zero to 4, we can derive the complex value of B by performing a division similar to
equation (10). Along this first strip of data, however, C*4 is obscured by the p ..
cut-off. Having measured B, we are then able to move to the value of #" in D(¢', p)
where an estimate of O *B lies within the range of the cut-off, thus allowing us to find
the complex value of C relative to B. Repeating this process, estimates of the relative
phases of all reciprocal points lying at arbitrarily large reciprocal vectors can be
found. A final Fourier transform of ¥(#) yields the complex, super-resolution image,
y(n).

It is apparent that in the case of a perfectly crystalline specimen of small unit cell
size, even the first reciprocal lattice point along ¥ = 0 in D(r’, p’) may be obscured by
the cut-off at pl,,.. Under these circumstances, the microdiffraction data fail to
provide any ptychographical phase information because the reciprocal lattice points
are more widely spaced than the total diameter of the objective aperture, so that the
dises shown in figure 5a do not overlap. This is the price which must be paid for
having a limited objective aperture. Because the phasing of higher-order beams relies
on interference with lower-order beams, the specimen must either be finite (in which
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case all diffraction orders are blurred out), of large unit cell size (and possibly
infinite), or amorphous. In practice, any real specimen of very small unit cell size
could be rendered finite or pseudo-amorphous by the addition of some randomly
positioned heavy atoms, though this condition is unlikely to occur in practice given
that in conventional microscopy it is usually possible to accommodate at least the
first-order diffraction spots within the transfer function of the objective lens.
Furthermore, it may be argued that since this technique fully accounts for the
instrument function, there is really no need for an objective aperture at all. The limit
of usable p’ will then be determined by the stability (or coherence) function of the
microscope. In §5, however, it will be shown that it may nevertheless be
advantageous to retain the objective aperture in order to overcome complications
which arise from the rapid breakdown of the two-dimensional projection approxi-
mation at high angles of scatter.

Finally, it is worth mentioning that when r* and p’ are both two-dimensional
vectors, the possibilities for constraining the phase assignment process become much
richer. At any value of ', there will be a two-dimensional complex diffraction pattern
available in D(#’, p’). We could choose to calculate the phase difference between any
point and p’ = 0 by a number of different routes, which take different paths around
the plane, and average many such routes to obtain a more noise-robust measure of
any particular phase.

4, Effect of thickness

Consider a three-dimensional specimen, which we denote y(r,z), where as before,
r is a two-dimensional vector lying in the plane normal to the optic axis. Let Z be a
scalar distance measured along the optic axis. We define the Fourier transform of

Y(r,2) as
Yr,2) = jffzﬁ(r, z)exp [i2n(r ¥ +2'2)] dz dr, (12)

where the three integral signs have been written out explicitly to exphasize the
number of dimensions over which we must perform the transform. In figure 9, we
show P(r',z') together with the Ewald sphere construction for scattering in the case
of microdiffraction. Instead of the single incident vector usually encountered in
scattering theory, in microdiffraction we have a range of incident beams, defined by
the width of the objective aperture. The strength of scattering in a particular
direction can be thought of as an integral in reciprocal space over a small, slightly
curved disc represented by the surface 4" (Hoppe & Hegerl 1980; Rodenburg 1988),
a slice through which is shown in the diagram. To account for aberrations and
defocus, 4" must also introduce the appropriate phase changes defined by equation
(1), with a value of defocus taken relative to the origin in z. When both this surface
and the curvature of the Ewald sphere are approximated as being flat, the
microdiffraction intensity is adequately represented by equation (4), namely a
convolution which depends entirely on " and has no 2z’ dependence. Under these
circumstances we are effectively treating the specimen as a projection, such that

Y(r) = J%ﬁ(", z)dz, (13)

where the Fourier transform of y(r) resides along 2’ = 0 in P(r',2’). We may derive
Phil. Trans. R. Soc. Lond. A (1992) ’
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Figure 9. The Ewald sphere construction for microdiffraction. A range of incident k-vectors extend
from the objective aperture to the origin of reciprocal space. Scattering to a particular angle 6 is
governed by an integration over the slightly curved surface A’. The departure of this surface from
the Ewald sphere by A%’ is less significant than the departure of the Ewald sphere by Az’ from the
plane of the projection approximation.

an approximate value of the maximum allowable thickness for this approximation
as follows. For a given scattering angle 6, let the distance in reciprocal space by which
the Ewald sphere has departed from 2z’ = 0 be A2’ (see figure 9), so that

= |k| (1 —cos 0) ~ k| 62, (14)

where |k| is the magnitude of the incident k-vector given by 2m/A. We expect the
typical size of a feature in reciprocal space in the 2’ direction to be about 2rt/7', where
T is the specimen thickness. Furthermore, for a given resolution Ar, we need to
process scattering data up to an angle of & ~ A/Ar. Assuming that the largest
allowable value of Az’ is 2n/7', we can then write

T~ 2(Ar)?/A. (15)

If we require Ar to be, say, 1.8 A, as in a conventional high-resolution electron
microscope, then the maximum specimen thickness is about 7'= 175 A for an
accelerating voltage of 100 keV (A = 0.037 A). This is quite possible to achieve in
practice (self-supporting carbon films, for example, can be manufactured to be as
little as 20 A thick). Indeed, in many classes of crystalline specimen, dynamical
scattering effects would already be significant at this value of thickness, and so for
genuine phase-contrast imaging, specimens should ideally be thinner. Suffice it to say
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that in bright-field imaging, breakdown of the projection approximation is not a
serious problem. Equivalently, we may observe that the depth of focus of the
electron optics is much larger than the typical specimen thickness. In the
microdiffraction plane, however, there is no real restriction on the size of detector
plane and hence the total angle 6 contributing to the experiment. Of course, this is
where the super-resolution information resides, but only at the price of greatly
restricting the useful values of 7. It would be quite practicable to collect all
scattering data up to, say, +37 mrad (about five times the width of the objective
aperture) with the intention of solving for the specimen function at 0.5 A resolution,
but the pro]ectlon approximation would fail for any specimen thicker than only
13.5 A, which in practice would be virtually impossible to manufacture. The
difficulty arises from the squared Ar term in equation (15), which can be understood
intuitively by considering apparent changes in the projection of the specimen in real
space. As it is viewed from different angles, atoms residing at the top and bottom
surfaces will appear to move with respect to one another. If the resolution is
increased by a certain factor, the ability to detect changes in orientation will increase
by the same amount, and thus restrict the values of ¢ for which the projection
approximation holds. However, to achieve that gain in resolution, the range of angles
processed by the microscope must also increase by the same factor, leading to a
minimum thickness proportional to the square of the desired resolution.

In the next section, we show that blind application of the Wigner distribution
deconvolution will yield an estimate of the complex value of the reciprocal space
P(r',2’) over the surface of the Ewald sphere, at least to within a limit dictated by
the size of the objective aperture, which turns out to be much less severe than the
breakdown of the projection approximation outlined above. Having obtained this
quantity, which is as much as we could wish to measure from a single scattering
experiment, we may choose to pick out a particular level of defocus within the bulk
of the specimen by emulating a conventional, unaberrated lens which re-interferes
the complex wavefield. After all, in normal light optics, the lens processes a wide
region of reciprocal space which reconstructs a particular level of the specimen at
high resolution. In the final image, parts of the specimen not lying in the focal plane
appear as a blurred background. Of course, it is impossible to reconstruct a three-
dimensional object from a two-dimensional data-set, but the curvature of the Ewald
sphere does contain at least some information about the z coordinate which should
not be ignored. In the case of a specimen consisting of heavy atoms distributed at low
density in a weakly scattering matrix, it may be possible to weigh the final
reconstruction in favour of one particular level in the specimen, in the same way as
a biological scientist may focus an optical microscope on one cell, provided the
scattering from material above and below the region of interest does not heavily
obscure the image.

We use the parabolic approximation for the curvature of the Ewald sphere
represented by equation (14). For all practical purposes, this will be sufficiently
accurate given that the conventional resolution limit could be surpassed by a factor
of 4 by processing only up to about 6 =+5° of the microdiffraction plane.
Accounting for the very small curvature in the disc 4” (figure 9) is possible but in the
present context will be ignored. 1t is equivalent to the fact that in real space, the
probe is focused through a varying beam waist; in other words it is z-dependent. If
a conventional objection aperture is used (with a semi-angle of 8 mrad), at the
specimen plane the probe is diffraction-limited, relatively broad and has such a
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shallow angle of convergence that its profile does not vary appreciably over a depth
(Az) of several hundred angstroms. The argument is similar to that described above;
for this range of convergence angles the projection approximation is valid. In the
next section, therefore, we treat the probe as a two-dimensional function which does
not vary significantly through the specimen depth, but the specimen is treated as
three dimensional to account for the much larger curvature of the Ewald sphere at
high angles of 6.

5. Full theory, including effects of partial coherence

For completeness, in this section we derive the full kinematical theory including
finite specimen thickness and the effects of partial coherence in the illuminating
beam (i.e. finite source size). The main mathematical tool we use for manipulation is
collapsing multidimensional Fourier integrals by means of the Dirac delta function.
In practice, however, it will not be possible to perform integrals over all space
because our data-set will necessarily be limited by both the microdiffraction plane
detector size (in reciprocal space) and the region of specimen over which we can move
the probe (in real space). These limitations can be expressed by a window function

2)

dependent upon either a real-space coordinate g or a reciprocal space coordinate q’.
It follows that we may then define an effective delta function given by

Q)-[leml)ol) oo

so that we may write that for some general function @,
@z ) =(5) an
q q-p q p

on the understanding that Q(II), )

is resolved only to the limit inherent in the extent of

o)

Unlike in §3b, where one integral sign was used for sums over vector quantities, in
what follows, each sign for each dimension will be written out explicitly.

With reference to figure 6, we allow the electron source to have an instantaneous
spatial and temporal complex amplitude denoted f(s, t), where s is a two-dimensional
vector in the source plane and ¢ is time. In practice, the objective lens demagnifies
by a factor of between 10 and 20 and there may be a gun or condenser lens mounted
before it. However, for theoretical purposes, we can regard the source as being
focused directly onto the specimen via a unity-magnification objective, it being
understood that the shape chosen for f(s,t) accommodates these other effects. All
time-varying quantities are understood to be analytical.
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Each point in the source is incoherent with respect to any other point, so that

S8, 0 f*(s+0,0)), = |f(s)[*0(0), (18)

where angle brackets represent an average over time, and § is the conventional Dirac
delta function.

The back focal plane of the objective lens lies in the Fraunhofer diffraction plane
of the source. As a function of reciprocal coordinate s, the complex amplitude of the
field in the back focal plane is then given by F(s’,¢) A(s") where

F(s',t) = fff(s, tyexp [i2n(s" s)]ds (19)

(the time taken for propagation of the wavefield has been ignored), and A(s’) is the
objective lens transfer function which will have unity amplitude within the objective
aperture, zero amplitude outside it, and a phase governed by equation (1), with
0 = |s’| A. The field illuminating the specimen when the probe is centred on a position
p is then given by

g(r:Z,P, t) == [f(rvt) Oa(r—p)] exp(_lkz)’ (20)

where © is the two-dimensional convolution operator, a(r) is the Fourier transform
of the aperture function A(#’), k is the wavenumber of the source, and z is the distance
measured along the optic axis. We have implicitly used the approximation that the
probe does not vary throughout the thickness of the specimen, as discussed in the
previous section. Bearing in mind that we are working under the first Born
approximation, the scattering amplitude in the vicinity of the specimen is now given
by

m(r,z,p,t) = y(r,2)g(r,z,p,1), (21)

where we adopt the three-dimensional specimen function ¥r(r, z) as discussed earlier.
The far-field microdiffraction plane as a function of scattering vector r, probe
position p, and time ¢ is then

M, p,t) = Jffm(r, z,p,t)exp [1I2n(r - r+32A|r'|?)] dr dz, (22)

where the second term in the exponential is a parabolic approximation for the
curvature of the Ewald sphere, also discussed in the previous section. We record
intensity over many cycles of the electron wavefield, and so the measured quantity
in the microdiffraction plane is the time average

I(r',p) = KM*(¥',p, ) M(¥', p, 1)), (23)

It should be noted that any instability in the specimen or the source (in sSTEM the
largest interference tends to be stray magnetic field reaching the field-emission gun,
adding ripple to the effective probe position) may be accommodated by choosing an
integration time in the detector plane comparable with the period of the oscillation
(e.g. the mains supply period) and by using a time-averaged source distribution for
/()12

In what follows, I'(s") is defined as the two-dimensional Fourier transform of the
intensity of the source function |f(s)|?. It is well known from light optics (the
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Van-Cittert—Zernike theorem (Born & Wolf 1964)) that I(s’) corresponds to the
coherence function of the source, namely the propensity for two regions of the
wavefield lying in the back-focal plane to be in phase with one another. From
equations (20)-(23), where the number beneath the integral indicates the number of
integrals,

1r'.p) = f m(b, 2, p,t) m*(c, z, p, ) exp li2n[r’ - (b—c)]} exp {in[ (=— &) AlF[2]}
6

xdbdedzd{

_ f AP F*@ D alb—p—q) a*(e—p—q) f(b.2) (e, O

x exp {i2n[#" - (b—c) ]} exp {in[(z— &) A|F'|*]} db dc dp dg dz d¢

= J AAD P> ab—p—q)a*(c—p—q) (b, 2)y*(c,{)

x exp {i2n[# - (b—c)]}exp {in[(z— &) A|¥'|*]} db dc dg dz d¢. (24)

Note that, as in §3b, ¥ and the total amplitude of this integral must be scaled
appropriately in view of the microscope dimensions, and that the exponential factor
in equation (20) can be ignored, given that in the Ewald sphere construction r* is
obtained by subtracting the incident k-vector from the scattered k-vector.

It is now convenient to express all quantities in terms of Fourier transforms, such
that

Ir'.p) = J I(q") A(b") A*(c") W(m',2") W*(n', 2)

xexp{i2n[¢’ (c—p—q)—b' - (b—p—q)—q q+n" -c—m’ -b—2"z
+2 2+ (b—c)+3— AP P
x dbdcdgdqg’dzd¢dz’d¢ db’ de’ dm’ dn’

= f I(q)YAWb)A*(c') P(m',2") V(n,z)

X0 —m' —b")6(c’"+n" —r)o(b'—c —q') 0z —AF?) 8(L—LAlF|?)
x exp [i2n(b"— ') p]dgq’ dz’ d¢ db’ de’ dm’ dn’

= f T(b' — 'Y AB') A*(c') (¥ — b, IAF|?) TH(r — ¢, 3AIP|2)
4

x exp [i2n(b'— ') p]db’ dc’, (25)

which may be compared with equation (4). Being only able to scan a limited region
of real space with the probe, ¥ will only be resolved to a particular resolution in
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reciprocal space. We may express this by the use of a window function w(p), such that
the quantity H(r,p’) used in the Wigner deconvolution is the Fourier transform of
1(v, p)w(p). Hence

H(r.p) = f I(b"—c) Ab") A*(c) P (r' = b, 3AIF[?) ¥*(r' — ¢, 3A1F ") w(p)

8
xexp[i2rn(b"p—c p+p p—rr)]db dc’dr dp

= f I'b'—c YA )A*(c) P —b" V) P — ', 1AF]?)
6
X 8(p'+ b —c')exp[—i2nr - r]db’ dc’ A’

= F(—p’)f A A*D +p') P — b 3K [?) P*(r — b —p', 3AIF]%)

4

x exp [ —i2nr - r]db’ dr
=F(—p’)ff (b )A*(b' +p)exp[—i2nd ¥ Y5(—p', ¢, b')db’, (26)

where
Yol —p' 1, b)) = Jf A+ b)) PE( +p' 30+ b)) exp [ —i2rc’ - #] de,
(27)

the tilda indicating that this can only be resolved to a ‘reciprocal resolution’ dictated
by the size of the probe-movement window function.

Equation (26) has a similar form to equation (5), though now that the thickness
dependence has been included, the integrals are no longer separable. In the limit of
an infinitesimally thin specimen, then

X"?’(_p/?r’bl) =X:}<’(_pl;r70) =X;§(—p/,7), (28)
where y&(—p’, r) is defined as before by equation (6). Note that under this definition,

the relationship between Wigner distributions written in terms of some general real-
space function ¢ and its Fourier transform @ is given by

Xq(aab) = Xz(_b7a)7 (29)

and thus the thin-specimen relationship equivalent to equation (7), but now
including partial coherence effects, would be

H(r,p')=T(—=p") x5, r) x3(—p', 7). (30)

From this point, deconvolution and phase retrieval may proceed as described in §36.
It is interesting to note that the coherence function I'(—p’) is entirely separable from
H(r,p’) and is only a function of p’. This means that it could in theory be accounted
for in the deconvolution process (equation (8)). Indeed, after transforming H(r,p’)
with respect to ¥ to obtain the final data-set D(#', p), it should be straightforward to
measure ['(—p’) by comparing the modulus of D(r’, p’) measured along p’ = 0 with
that in the p’ direction at various other values of r’. Although it may well possess
zeros (or, worse, decay rapidly to zero), this need not affect the resolution of the final
reconstruction. As with the method described in §36 which may be used to avoid the
objective aperture cut-off, it should be possible to arrange to take only small steps
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Figure 10. A model calculation of the reconstruction algorithm for a one-dimensional complex
specimen function. Real parts of functions are denoted by solid lines, imaginary parts by
discontinuous lines. The calculation was performed on a 64-element grid of sample points separated
by 0.5 A, of which only the central 32 elements have been displayed. (a) The specimen function.
(b) The band-width limited, aberrated probe function. (¢) The reconstruction with » = 10000 (see
text), corresponding to a noise level in the recorded data of 1%. Note that only a minimal fraction
of D(#',p’) has been processed to obtain this result. (d) The reconstruction with » = 100,
corresponding to 10 % noise. The main features are seen to remain intact. (¢) The reconstruction
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out into the p’ direction at any given #’, provided, as before, that the specimen
possesses at least one reciprocal lattice point within the width of the coherence
function. It is worth mentioning that we may obtain some intuitive feel for why I”
is purely a function of p’ by considering reciprocity. A large source in STEM is
equivalent to a large detector element size in the image plane of cTEM. Despite the
usual limitations of the objective lens transfer function, this further reduces the final
resolution of any particular image (which remember is collected as a function of p),
and hence creates a cut-off in p’ at a value less than that dictated by the electron
optics. However, like the transfer function, I can be fully accounted for by the
Wigner devonvolution method. This is perhaps one of the most important
consequences of the analysis, in view of the fact that the most limiting experimental
factor in obtaining higher resolution by other means (such as holography) is the finite
degree of coherence that can normally be obtained in the laboratory environment,
whereas in this method it does not appear to present such a serious problem.

The effect of specimen thickness is clearly less straightforward, because the
dependence of §¥(—p’, r,b’) on b’ renders the integrals in equation (26) inseparable.
It should be borne in mind, however, that the value of A(b") A*(b’ + p’) will be zero for
values of " beyond the objective aperture width " = p; ... For moderately thin
specimens, for which¥(#',2") will be slowly varying in the 2z’-direction, the complex
value of ¥(#,2’) over the region of the scattered objective aperture disc will be close
to the complex value measured over the Ewald sphere. The maximum departure of
the aperture from the surface of the sphere is denoted AA” (see figure 9) and is given
by alk|sin @ ~ a|k| @, where a is the semi-angle of the objective aperture. It follows
that the maximum thickness of specimen allowable for a notional resolution of Ar
(using a similar argument to that in §4) is 7' = Ar/a. To solve at a resolution of 0.5 A,
the maximum allowable specimen thickness is about 65 A (compared with 13.5 A for
the strict projection approximation), which should be quite practicable to achieve
experimentally. Of course, Fourier transforming the complex distribution lying over
the sphere as if it were a two-dimensional function will not yield a clean image, but
one reconstructed as if focused at a particular plane through the specimen. Needless
to say, the only way to overcome completely the projection difficulty would be by
performing many experiments at different specimen tilt angles. In this way, a whole
section of ¥(#',2’) could be reconstructed in complex amplitude, though care would
still have to be taken to avoid the difficulties inherent in equation (26), perhaps by
employing an iterative algorithm which makes progressively better-informed guesses
of ¥Y(#',2'), and then feeds back this information, allowing better separation of the
instrument and specimen contributions.

6. The effect of noise

In this section we demonstrate that even when using a very simple (and
intrinsically wasteful) scheme for retrieving phase from the final data-set D(#/, p’),
the Wigner-distribution deconvolution method is remarkably noise robust. Previous
experience has shown that other phase-retrieval methods designed to process more
limited data-sets (for example, iterative algorithms that process only the two-

of (f) using the same probe function and an average of only one count per detector pixel. (f) A very
simple Young’s slits specimen function. (g) The intensity of the conventional bright-field image for
the same specimen and probe functions as in (@) and (b).
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dimensional Fraunhofer intensity distribution or the pair of image and diffraction
planes available in a conventional electron microscope (see the review by Saxton
1980) may work well in the double-precision digital computer but may either fail
catastrophically when faced with real experimental data, or must be implemented
with considerable care (Chapman 1975b). Furthermore, many specimens damage
with over-exposure to the beam, and so meaningful images must be collected with
relatively poor counting statistics. Other more mundane experimental constraints,
such as specimen drift due to differential thermal expansion of the specimen stage,
make it highly favourable to reduce the integration time necessary for data
collection, in which case the reconstruction process must be as noise robust as
possible.

We have performed some illustrative calculations in a one-dimensional system.
The specimen function, probe function and some sample reconstructions are shown
in figure 10. Some examples of the two-dimensional data-sets such as the
microdiffraction plane intensity distribution, the quantity H(r, p’), the amplitude of
the probe Wigner distribution y,(r, —p’), and the amplitude of D(#’, p’) are shown in
figure 11. Choosing to do these calculations in one-dimension has the advantage that
each stage of the deconvolution process can be illustrated graphically. It must be
remembered that when the image is two dimensional, data-sets such as H(r,p’) are
four-dimensional. Furthermore, since it is well established that for reasons to do with
the geometrical constraints of the Fourier transform, phase-retrieval methods are
always much more robust in more than one dimension (see, for example, Bates &
McDonnell 1986), demonstrating that the method works in the one-dimensional case
can be regarded as a more stringent test of the new technique. The calculation ignores
the complications of thickness effects and finite source size, but we introduce shot-
noise in the microdiffraction plane as follows. The average intensity over all pixels in
|M(r', p)|? is scaled to unity. The particular value at each detector pixel is then
multiplied by a factor n to give a measured intensity /. To this is added random
gaussian noise with a standard deviation of /I, and the resulting value is then
rounded to the closest integer value. Negative values of intensity, which occasionally
occur at points of very low signal (because of the tail of the random-noise gaussian)
are assigned to zero. n can therefore be regarded as a measure of the average number
of electrons per microdiffraction pixel, and the final microdiffraction measurement as
being an integral number of electrons corrupted by shot-noise statistics.

We assume here that 4(r’) (and hence the probe function a(r)) is known accurately.
In practice, this could be measured to a first approximation by using standard
techniques employed in high-resolution microscopy; namely by measuring the
aberration constant of the lens, and by processing a through-focal series of images of
a thin amorphous film to determine the level of defocus. Because of the highly
redundant nature of the final data-set, there will be opportunity to refine the exact
form of y,(r, —p’) (see §3b), but for the time being we merely establish that the
deconvolution represented in equation (9) is stable. The constant ¢ used in the
Wiener filter is varied according to the level noise present until the final
reconstruction is as clean as possible. Figure 11e shows a plot of the phase difference
in D(r',p’) between perfect data (no noise) and noisy data with n = 100 (i.e. an
average noise level of about 10%). We plot a zero phase difference as white, with
grey-levels proportional the modulus of the phase difference up to a maximum of «,
represented as black. As one would expect, large phase differences occur in the noisy
data where the amplitude of D(¢, p’) is low (compare with figure 11d), but there are
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(®

Figure 11. Some sample plots of the two-dimensional data-sets which occur during the
reconstruction process. The specimen and probe were the same as those used in figure 10a and b.
All the functions (apart from the recorded data in (a)) are complex quantities. Unless otherwise
stated, the modulus of the function has been displayed. (a) The recorded data-set |[M(#', p)|%. The
data is asymmetric because the specimen (figure 10a) lies mostly at positive values in real space.
(b) The function H(r,p’), where the filter processing occurs. (¢) The function y,(r, —p’). Note the
cut-off in the p direction. (d) The D(r’, p’) data-set. It is in this plane that the phase-retrieval occurs.
(e) Plot of the phase difference in D(#’, p’) between perfect data and noisy data (with n = 100). See
main text for details. ‘

still large regions which have remained relatively uncorrupted, even with these low
counting statistics. The characteristic cross-hatched form of D(#’, p’) arises from the
nature of equation (9). We derive ¥(r’) from D(r’, p’) by using equation (10) as far as
the pl,.. cut-off. To improve resolution further, we determine offset values for w’ in
equation (11) by seeking values of D(r/, p’) that have maximum magnitude for any
given value of #/, but which lie at points which are more than half way towards
Pmax- This elementary algorithm only uses a minimum number of values in D(r’, p’)
to reconstruct ¥Y(r’), but it does reduce the accumulation of phase error by avoiding
the dark regions of figure 11, while at the same time reducing the total number of
steps required to reach high-resolution information.

It has been found that the accuracy of the final reconstruction depends not only
on n, as defined above, but also upon certain attributes of the specimen such as its
total transparency and crystallinity. The reason for this is that the dynamic range
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of a given microdiffraction pattern becomes larger if the central disc is largely
unattenuated. Similarly, if the specimen is more ordered, scattered intensity arrives
in localized regions (diffracted discs) such that pertinent phase information lying
outside the discs, or lying in small regions of disc overlap, have relatively low
intensity. This information then tends to be lost in the scaling process described
above. For example, if we postulate a simple Young’s slit experiment illustrated in
figure 10 f then it is possible to get a good reconstruction with an average of only one
electron count per detector pixel (figure 10e). However, for more transparent
specimens, where the central, unscattered disc of intensity becomes very bright,
higher average count values are necessary in order not to lose the weakly diffracted
super-resolution information. Experimentally, care will have to be taken to avoid the
loss of low-intensity regions of the microdiffraction plane, perhaps by having a
detector of variable response as a function of scattering angle. Alternatively, a more
elaborate filtering and phase-retrieval algorithm could be used to process the data
collected so as to avoid high-intensity regions in the microdiffraction plane. This will
clearly have to be the subject of further work. However, suffice it to say that with
the simple phase-assignment algorithm we use here, the reconstruction is well
conditioned, especially in view of the fact that the specimen function is one
dimensional and that we have only used a minimal fraction of the D(#', p’) data-set.

7. Conclusions

Although the microdiffraction data-set collected as a function of all probe positions
is a complicated mixture of diffraction, image, holographic and ptychographic
information, it is possible to deconvolve it by using a Wigner distribution to obtain
the complex value of the specimen function at a resolution dictated by the largest
diffraction angle which can be measured in the microdiffraction plane. Because this
is much larger than the width of the objective lens transfer function of the
microscope, the technique offers a practical means of overcoming the long-standing
resolution problem in electron microscopy. An important difference between the
Wigner deconvolution technique and conventional holography is that it can cope
with partial coherence within the source because it does not require beams which
have been well separated within the experimental apparatus to re-interfere with one
another coherently. The degree of coherence ordinarily available in the conventional
electron microscope (of the order of the width of the objective aperture) is sufficient
for the reconstruction process. This is because the technique retrieves the phase of
high-angle diffraction beams by interfering them with lower-order diffraction beams,
thus using a ‘reference’ wave which is generated within the sample. Although the
existence of this type of information has been known for some years, up until the
present work there has been no obvious way of processing all the data available
simultaneously, while at the same time accounting for the effects of the instrument
function.

That the method reduces to Fourier transforms suggests that the technique may
eventually be run in real time. The main practical difficulty will be dealing with such
large quantities of information. With an efficient recording medium, enough
intensity arrives in the microdiffraction plane for TV-rate exposure times (2550 ms),
even when the specimen is thin (see, for example, results from the film-recording
method of Rodenburg (1988)). A data-set using 100 X 100 probe positions could
therefore be recorded in about 10 minutes, which should be short enough to avoid the
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adverse effects of specimen drift and contamination. The problem is to record, shift
into memory and process the diffraction patterns from all such probe positions.
However, given the rapid development of ccb technology and the current rate of
reduction in the cost of raw computing power, this should not be regarded as a
significant obstacle.

The method may also prove to be useful for radiations other than electrons, for
which it is difficult to manufacture a good quality lens, but for which an array
detector is easy to build. Indeed, the lens is entirely redundant provided some sort
of aperture (corresponding to the probe a(r)) can be reliably moved across the
specimen. An obvious candidate is X-ray microscopy. At present, the best resolution
available in a scanning zone-plate X-ray microscope is of the order of about 150 nm
(Kenny et al. 1989), which again is much larger than the associated wavelength
(1-10 A). Furthermore, experiments with X-ray holography (Howells 1984) suggest
that the degree of coherence for a synchrotron source is not insignificant. Placing a
cep array in the far-field would not be experimentally difficult, and by using the
Wigner deconvolution all the effects of the poor quality zone-plate could be
accounted for as well as allowing full use of the high-angle diffraction data. It could
be argued that since X-rays produce much less radiation damage than electrons, such
a scheme may ultimately surpass the usefulness of the electron microscope, allowing
biological samples to be imaged at atomic resolution. However, there will be some
significant difficulties, the worst of which will probably be specimen drift (as in the
early days of holography) due to the long integration times necessary for a low flux
source and the fact that X-rays have a very much smaller cross section of interaction
with matter compared with electrons.

J.M.R. is grateful to the Royal Society and the SERC for financial support. This collaboration was
made possible by a Royal Society travel scholarship.
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igure 11. Some sample plots of the two-dimensional data-sets which occur during the
econstruction process. The specimen and probe were the same as those used in figure 10a and b.
\l the functions (apart from the recorded data in (a)) are complex quantities. Unless otherwise
tated, the modulus of the function has been displayed. (a) The recorded data-set |[M(r’. p)|*. The
ata 1s asymmetric because the specimen (figure 10a) lies mostly at positive values in real space.
h) The function H(r,p’), where the filter processing occurs. (¢) The function y (r, —p’). Note the
ut-off in the p direction. (d) The D(r’, p’) data-set. It is in this plane that the phase-retrieval occurs.
2) Plot of the phase difference in D(r’, p’) between perfect data and noisy data (with » = 100). See
1ain text for details.
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